
Lexical Analysis
Prof. James L. Frankel

Harvard University

Version of 10:58 PM 15-Feb-2022
Copyright © 2022, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Regular Expression Notation

• We will develop a notation – called regular expressions – to describe
languages that can be built from an alphabet (letters, numbers, and
other symbols) with certain operations applied – potentially
recursively applied

• Operators are
• Union – designated by infix | (vertical bar)

• Concatenation – designated by sequential subexpressions

• Closure – designated by a postfix superscript of either * or +

2

Alphabet & Strings

• An alphabet is any finite set of symbols

• A string over an alphabet is a finite sequence of symbols drawn from
that alphabet

• |s| is the length of string s, i.e., the number of symbols in string s

• ε is the string of length zero, i.e., the empty string

3

Language, Union, and Concatenation

• Assume L is a language
• L is any countable set of strings over some fixed alphabet
• Includes the empty set, syntactically well-formed C programs, all grammatically

correct English sentences
• This definition of language does not ascribe any meaning to strings in the language

• Union of languages
• Identical to the set operation of union
• A language formed from the union of two languages is composed of all strings in

either the first language or the second language

• Concatenation of languages
• A language formed from the concatenation of two languages is composed of all

strings formed by taking a string from the first language and a string from the second
language, in all possible ways, and concatenating them

4

Closure

• Kleene Closure or, simply, Closure
• The set of strings that can be created by concatenating L zero or more times

• Denoted by L*

• L0 (i.e., concatenation of L zero times) is defined to be { ε }

• Li , for i > 0, is defined to be Li-1 L

• Positive Closure
• Same as the Kleene Closure, but without L0

• The set of strings that can be created by concatenating L one or more times

• Denoted by L+

• ε is not in L+ unless ε is in L itself

5

Regular Expression

• Σ is the alphabet
• L(r), where r is a regular expression, is the language denoted by r
• ε is a regular expression
• L(ε) is {ε}, that is, the language whose sole member is the empty string
• If a is a symbol in Σ, then

a is a regular expression and
L(a) = {a}

• For regular expressions r and s,
• (r) is a regular expression denoting L(r)
• (r)|(s) is a regular expression denoting L(r) U L(s)
• (r)(s) is a regular expression denoting L(r)L(s)
• (r)* is a regular expression denoting (L(r))*

6

Precedence of Regular Expression Operators

• Highest precedence: Closure (or unary *)

• Next highest precedence: Concatenation

• Lowest precedence: Union or Alternation (or |)

• All operators are left associative

7

Algebraic Laws for Regular Expressions

• r | s = s | r | is commutative

• r | (s | t) = (r | s) | t | is associative

• r(st) = (rs)t concatenation is associative

• r(s | t) = rs | rt concatenation distributes over |

• (s | t)r = sr |tr concatenation distributes over |

• εr = rε = r ε is the identity for concatenation

• r* = (r | ε)* ε is guaranteed in a closure

• r** = r* * is idempotent

8

Transition Diagrams

letter otherstart

Letter or digit

*

return(…)

start Designated start state

Accepting (final) state

Edges labeled with symbol or set of symbols

* Retract one position (symbol)

9

Nondeterministic Finite Automata (NFA)

• A finite set of states S.

• A set of input symbols Σ, the input alphabet. We assume that ε,
which stands for the empty string, is never a member of Σ.

• A transition function that gives, for each state, and for each symbol in
Σ U {ε} a set of next states.

• A state s0 from S that is distinguished as the start state (or initial
state).

• A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).

10

Nondeterministic Finite Automata (NFA) compared
to Deterministic Finite Automata (DFA)

• NFA
• No restrictions on the labels on edges

• The same symbol can label several edges out of the same state

• ε, the empty string, is also a possible label

• DFA
• For each state, and for each symbol of its input alphabet, there can be exactly

one edge with that symbol leaving that state

• No edge can be labeled with ε, the empty string

• Either an NFA or a DFA can be represented by a transition graph

11

Construction of an NFA from a Regular
Expression
• Apply the McNaughton-Yamada-Thompson algorithm

• Apply the algorithm on constituent subexpressions

12

Construction of an NFA: expression ε

i εstart f

• For regular expression r = ε

13

Construction of an NFA: expression a in Σ

i astart f

• For regular expression r = a (in Σ)

14

Construction of an NFA: expression with
union (that is, |)
• For regular expression r = s | t

• N(s) and N(t) are NFAs for
regular expressions s and t,
respectively

i

ε

start f

ε ε

ε

N(s)

N(t)

15

Construction of an NFA: expression with
concatenation
• For regular expression r = st

• N(s) and N(t) are NFAs for regular expressions s and t, respectively

start i N(s) fN(t)

16

Construction of an NFA: expression with
closure (that is, *)
• For regular expression r = s*

• N(s) is an NFA for regular expression s

start N(s) fi ε ε

ε

ε

17

Subset Construction of a DFA from an NFA

• We refer to the NFA as N and to the DFA as D

• D’s states will be called Dstates

• D’s transitions will be encoded in a transition table Dtran

• Each state of D is a set of NFA states

18

Subset Construction of a DFA from an NFA

• s refers to a single state of N

• T refers to a set of states of N

• ε-closure(s) is the set of NFA states reachable from NFA state s on ε-
transitions alone

• ε-closure(T) is the set of NFA states reachable from some NFA state s
in set T on ε-transitions alone

• move(T, a) is the set of NFA states to which there is a transition on
input symbol a from some state in T

19

Computing ε-closure(T)

push all states of T onto stack;
initialize ε-closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled ε)

if (u is not in ε-closure(T)) {
add u to ε-closure(T);
push u onto stack;

}
}

20

Subset construction

initially, ε-closure(s0) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure(move(T, a));
if (U is not in Dstates)

add U as an unmarked state in Dstates;
Dtran[T, a] = U;

}
}

21

Example

• Construct an NFA from a regular expression

• Construct a DFA from an NFA

22

